


## Molib-tech<sup>™</sup>

Nowadays, a new concept of **quality** is driving firms to expand their offerings of products and services in order to meet **specific needs** and build solid **partnerships** with their customers.

Through a complex research project, Zenit has developed Molib-Tech<sup>™</sup> a **new material** to:

- · increase components' strength
- improve reliability
- keep performance constant over time
- even in extreme duty conditions.





Molib-tech<sup>™</sup> is an alternative to the conventional ceramic coating process and involves the **application of an additional thick layer of a very hard material** on the cast iron, to improve products' **mechanical and performance characteristics.** 

The technique is defined as "cold" coating, with no high temperatures to cause deformation or stresses in the piece.

The metallic **molybdenum carbide** coating used by Zenit is particularly **suitable for preventing serious wear due to erosion or cavitation on pump impellers, suction flanges and bodies.** 





Molib-tech™

The coating forms a mechanical bond to the substrate thanks to the high particle impact speed and the fact that the substrate surface is well prepared through sand-blasting.

Unlike the conventional ceramic coating, the **uniform layer** of metal coating does not cause any change in clearance or loss of performance.

The molybdenum carbide coating gives the treated component a **sur-face hardness** considerably higher than cast iron (1000/1100 HV), making it suitable for heavy-duty applications and use with abrasive liquids.



## **Advantages**

| Strength:      | Better resistance to abrasion, erosion and fretting wear than other processes.<br>Tougher in relation to impacts and scratching than ceramic coating.                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Repeatability: | Automatic application rules out human error and provides repeatable, constant protective coating characteristics unachievable by hand.                                                                                                                                     |
| Balancing:     | The uniform coating thickness implies better impeller balancing, meaning a longer lifetime for rotating parts (mechanical seals, drive shaft and bearings).                                                                                                                |
| Performance:   | Unlike conventional surface treatments, with cold coating there is no peeling;<br>what's more, the application of a uniform layer across the entire exposed surface<br>maintains the original hydraulic performances for longer, also reducing wear of<br>mating surfaces. |

## **Chemical composition**

| <b>Mo</b> min 99.97%  | <b>Κ</b> max 20 μg/g  | <b>Ο</b> max 40 μg/g                                                              |
|-----------------------|-----------------------|-----------------------------------------------------------------------------------|
| <b>Al</b> max 10 μg/g | <b>W</b> max 300 μg/g | <b>Pb</b> max 5 μg/g                                                              |
| <b>Fe</b> max 50 μg/g | <b>Ν</b> max 10 μg/g  |                                                                                   |
| <b>Si</b> max 20 μg/g | <b>Hg</b> max 1 μg/g  |                                                                                   |
| <b>Η</b> max 10 μg/g  | <b>Cu</b> max 20 μg/g | The requirements of directives 2011/65/EU, 2000/53/EU and 2006/122/EU with regard |
| <b>Cd</b> max 5 μg/g  | <b>Ni</b> max 50 μg/g | to the restrictions on the use of hazardous                                       |
| <b>Cr</b> max 40 μg/g | <b>C</b> max 50 μg/g  | substances (RoHS) are complied with.                                              |

## **Mechanical characteristics**

| Tensile strength EN ISO 6892-1/B                           | > 700 MPa |
|------------------------------------------------------------|-----------|
| Percentage total elongation after fracture EN ISO 6892-1/B |           |
| Density EN ISO 3369                                        |           |
| Surface hardness                                           |           |

\* Ref.: ASTM table A370-03a